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Abstract

In this paper we studied about the effect of the open crack and a moving mass on the dynamic behavior of a simply

supported pipe conveying fluid. The equation of motion is derived by using Lagrange’s equation and analyzed by

numerical method. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments.

That is, the crack is modeled as a rotational spring. This matrix defines the relationship between the displacements and

forces across the crack section and is derived by applying fundamental fracture mechanics theory. The influences of the

crack severity ratio, the position ratio of the crack, the moving mass and its velocity, the velocity of fluid, and the coupling

of these factors on the vibration mode, the frequency ratio, and the mid-span displacement of the simply supported pipe

are depicted.

r 2005 Published by Elsevier Ltd.
1. Introduction

The detection and control of damage in mechanical structures are important concerns of engineering
communities. When a structure is subjected to damage its dynamic response is varied due to the change of its
mechanical characteristics. In this framework the interesting issue is the effect of an open crack on the
structural response. And the effect of moving mass on the structures and the machines is an important
problem both in the field of transportation and on the design of machining processes. And the fluid flowing
inside the pipe acts as the concentrated tangential follower force at the tip of the pipe, and exerts a lot of
influences on the dynamic characteristic of a pipe. Therefore, a large number of papers have presented about
the dynamic behavior of fluid-conveying pipes since the early 1960s. The transfer of energy between the
flowing fluid and the pipe was discussed by Benjamin [1]. The problem of flutter induced by a pure rocket
thrust, which has applications to missiles, spacecraft and space structure, is also closely related [2]. Lee [3]
studied the dynamic response of a clamped–clamped beam acted upon by a moving mass. He analyzed the
problem of the moving mass separating from the beam by monitoring the contact forces between them. A lot
of studies about the dynamic behavior of a beam structure under moving load and moving mass were reported
ee front matter r 2005 Published by Elsevier Ltd.
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Nomenclature

ac depth of crack
A cross-sectional area of pipe
b half-length of crack
C flexibility matrix
dn deflection of pipe, dimensionless
E Young’s modulus
I second moment of area of the pipe cross-

section
J strain energy density function
k number of segment due to crack
KI stress intensity factor (fracture mode I)
KR rotating spring coefficient
L length of pipe
La Lagrangian
m mass per unit length of pipe
mf fluid mass per unit length of pipe
mm moving mass
Mf fluid mass per unit length of pipe,

dimensionless
Mm moving mass, dimensionless
n number of generalized coordinates

qn deflection of pipe
tp thickness of pipe
Tf kinetic energy of fluid in pipe
Tm kinetic energy of moving mass
Tp kinetic energy of pipe
u velocity of fluid
U velocity of fluid, dimensionless
v velocity of moving mass
Vp potential energy of pipe
Wc work done by conservative part of

applied forces by fluid velocity
Wnc work done by non-conservative part of

applied forces by fluid velocity
xc crack location
np Poisson’s ratio
y half-angle of crack
y� half-angle of crack, dimensionless
k shearing coefficient of cross-section of

pipe
x distance measured along pipe, dimen-

sionless
xc crack location, dimensionless
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[4–6]. Recently, Mahmoud and Abou Zaid [7] used an equivalent static load approach to determine the stress
intensity factors for a single- or double-edge crack in a beam subjected to a moving load. Chondros and
Dimarogonas [8–10] studied the effect of the crack depth on the dynamic behavior of a cantilevered beam.
They showed that the increase of the crack depth reduces the natural frequency of the beam. Also, they used
energy method and a continuous cracked beam theory for analyzing the transverse vibration of cracked
beams. Ostachowicz and Krawczuk [11] investigated the influence of the position and the depth of two open
cracks upon the fundamental frequency of the natural flexural vibrations of a cantilever beam. To model the
effect of the local stress in the crack, they introduced two different functions according to the symmetry of the
crack. The dynamic characteristics of a cracked rotor supported on AMBs are studied; the effect of using
optimal controller parameters on the dynamics of the active cracked rotor and the effects of crack on the
control system are analyzed [12]. An equation of bending motion for Euler–Bernoulli beam containing pairs of
symmetrical open cracks was derived by Christides and Barr [13]. The cracks were considered to be normal to
the beam’s neutral axis and symmetrical about the plane of bending. Dado and Abuzeid [14] studied the
modeling and analysis algorithm for cracked Euler–Bernoulli beams by considering the coupling between the
bending and axial modes of vibration. This algorithm is applied to the analysis of the vibration behavior of the
cracked beam and particularly the natural frequency and mode shapes under the effect of added mass and
rotary inertia at the free end. Liu et al. [15] examined the suitability of using coupled responses to detect
damage in thin-walled tubular structures. By coupled response they referred to the ability of a structural
member with a circumferential crack to experience composite vibration modes (axial and bending) when
excited purely laterally. Zheng and Fan [16,17] studied the stability of a cracked Timoshenko beam column by
modified Fourier series. Also, they present simple tools for the vibration and stability analysis of cracked
hollow-sectional beams. Maiti et al. [18] have shown the results of study on crack detection in pipes filled with
field by the theory analysis and the experiment. Recently, reviews on vibration of cracked structures were
reported by Wauer [19] and Dimarogonas [20], and many studies investigated the dynamic response of a beam
structure with a crack [21–30].
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In this study, the crack effects on the dynamic behavior of the cracked pipe conveying fluid with the moving
mass are investigated. That is, the influences of a crack, position of a crack and the velocity of the moving
mass have been studied on the dynamic behavior of a simply supported pipe conveying fluid system. In
addition, the influences of a fluid flow have studied on the dynamic characteristics of a cracked simply
supported pipe with the moving mass. The simply supported pipe conveying fluid has a circular hollow cross-
section. The crack is assumed to be always open during vibrations. The crack compliance is modeled by using
the strain energy release rate relation.

2. Theory and formulations

The system with a moving mass on the cracked simply supported pipe conveying fluid is shown in Fig. 1,
where mm is a moving mass, v is the velocity of the moving mass, u is the velocity of fluid flow, L is the total
length of the pipe, and xc is the position of the crack from the left-hand support. Fig. 2 shows a circular hollow
cross-section of the cracked section. yc and 2b are the crack depth(severity) and the length of a crack,
respectively. Two equations of motion are derived for the two parts of the pipe located on the left and on the
right of the cracked section. Fig. 3 represents the modeling of the cracked element. A local flexibility matrix
connecting two undamaged pipe segments represents the crack section.

2.1. Energy of the pipe and moving mass

By using the assumed mode method, the transverse displacement yðx; tÞ of a cracked simply supported pipe
can be assumed to be as

yðx; tÞ ¼
Xm
n¼1

fnðxÞqnðtÞ, (1)

where qnðtÞ are generalized coordinates which is time dependent, m is the total number of the generalized
coordinates, and fnðxÞ are spatial mode functions of a simply supported beam missing the fluid and a moving
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Fig. 1. Geometry of the cracked simply supported pipe with a moving mass.
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Fig. 2. Cross-section of the cracked pipe.
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Fig. 3. Modeling of the cracked element.
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mass. In Fig. 1 the energy of the cracked pipe can be written as

Tp ¼
1

2

Xm
n¼1

X2
k¼1

m

Z Lk

0

f2
nkðxÞ dx _q2

nðtÞ

� �
; (2)

V p ¼
1

2

Xm
n¼1

X2
k¼1

EI

Z Lk

0

ff00nkðxÞqnðtÞg
2 dx

� �
þ

1

2
KRðDy0cÞ

2. (3)

In Eq. (3), the quantity

Dy0c ¼
dy

dx

����
x2¼0

�
dy

dx

����
x1¼xc

(4)

represents the jumps in the rotation. The kinetic energy of the moving mass can be expressed as [6]

Tm ¼
1

2
mm

Xm
n¼1

X2
k¼1

fv2q2
nðtÞf

02
nkðxmÞ þ 2vqnðtÞ _qnðtÞfnkðxmÞf

0
nkðxmÞ þ _q2

nðtÞf
2
nkðxmÞ þ v2g, (5)

where ð�Þ denotes the q=qt, and ð0Þ represents the q=qx. In addition, m is mass per unit length of the pipe, KR is
bending stiffness, and EI means bending stiffness coefficient. k is the number of the segments (Fig. 3). Since the
horizontal velocity of the moving mass is v, the horizontal displacement of the moving mass xm is

xm ¼ f mðtÞ ¼

Z t

0

v dt ð0pxmpLÞ. (6)

2.2. Work and energy due to the fluid flow

The kinetic energy of the fluid flow inside the pipe can be expressed as [31]

Tf ¼
1

2
mf

Xm
n¼1

X2
k¼1

Z Lk

0

fu2 þ 2ufnkðxf Þ _qnðtÞfnkðxf ÞqnðtÞ þ ffnkðxf Þ _qnðtÞg
2g dxf

� �
ðxf ¼ ut; 0pxf pLÞ, (7)

where mf is the fluid mass per unit length of a pipe. The work of a follower force due to the fluid discharge is
divided into two kinds of work, one is the work done by conservative force component, and the other is the
work done by non-conservative force component. The work Wc due to the conservative component of a
tangential follower force is

W c ¼
1

2

Xm
n¼1

X2
k¼1

Z Lk

0

mf u2ff0nkðxf ÞqnðtÞg
2 dxf : (8)
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The work dW nc due to the non-conservative component of a follower force is

dW nc ¼ �
Xm
n¼1

mf ff
0
n2ðLÞfn2ðLÞgqnðtÞdqnðtÞ ¼ 0. (9)

2.3. Boundary conditions

The boundary conditions of a cracked simply supported pipe are

for x ¼ 0; fn1ð0Þ ¼ 0 and
q2fn1ð0Þ

qx2
¼ 0,

for x ¼ L; fn2ðLÞ ¼ 0 and
q2fn2ðLÞ

qx2
¼ 0. ð10Þ

The boundary conditions for the transverse deflection, bending moment, shear force and slope at the cracked
section ðx ¼ xcÞ are

fn1ðxcÞ ¼ fn2ðxcÞ;
q2fn1ðxcÞ

qx2
¼

q2fn2ðxcÞ

qx2
;

q3fn1ðxcÞ

qx3
¼

q3fn2ðxcÞ

qx3
,

qfn2ðxcÞ

qx
�

qfn1ðxcÞ

qx
¼

EI

KR

q2fn2ðxcÞ

qx2
. ð11Þ

2.4. Crack modeling

Consider the bending vibrations of a uniform Euler–Bernoulli beam in the x–y plane, which is assumed to
be a plane of symmetry for any cross-section. The crack is assumed to be always open. The additional strain
energy due to the crack can be considered in the form of a flexibility coefficient expressed in terms of the stress
intensity factor, which can be derived by Castigliano’s theorem in the linear elastic range. Therefore, the local
flexibility in the presence of the width 2b of a crack is defined by [20]

Cij ¼
quij

qPj

¼
q2

qPiqPj

Z b

�b

Z ac

0

JðaÞ da dz

� �
, (12)

where Pi is the load in the same direction as the displacement and JðaÞ is the strain energy density function.
The function is

JðaÞ ¼
1

E�
ðKIM Þ

2, (13)

where E� ¼ E=ð1� n2pÞ for the plane strain and np is Poisson’s ratio. The stress intensity factor for the bending
moment is given by

KIM ¼
M

pR2tp

ffiffiffiffiffiffiffiffiffiffiffi
pRyc

p
FbðycÞ, (14)

where R ¼ ðRo þ RiÞ=2 is the mean radius. yc is the half-angle of the total through-wall crack (the crack
severity will be indicated by yc=p as percentage [15]) and

F bðycÞ ¼ 1þ At 4:5967
yc

p

� �1:5

þ 2:6422
yc

p

� �4:24
" #

, (15)

where

At ¼ 0:125
R

tp

� 0:25

� �0:25

for 5p
R

tp

p10,

At ¼ 0:4
R

tp

� 3:0

� �0:25

for 10p
R

tp

p20, ð16Þ



ARTICLE IN PRESS
H.-I. Yoon, I.-S. Son / Journal of Sound and Vibration 292 (2006) 941–953946
where tp is the thickness of the pipe. Substituting Eqs. (14)–(16) into Eq. (13), the flexible matrix due to the
crack can be obtained.

2.5. Equation of motion

2.5.1. Dimensionless equation of motion

The equation of motion of the system is obtained by substituting the above work and energy functions into
the Lagrange’s equation.

d

dt

qLa

q _qi

� �
�

qLa

qqi

� �
¼ 0, (17)

where La can be defined as follows:

La � ðTp þ Tm þ Tf � VpÞ þW c þ dW nc. (18)

For simplicity, the following dimensionless parameters are introduced:

x ¼
x

L
; xf ¼

xf

L
¼ uL

ffiffiffiffiffiffi
m

EI

r
t; t ¼

t

L2

ffiffiffiffiffiffi
EI

m

r
,

Mm ¼
mm

mL
; U ¼ uL

ffiffiffiffiffiffi
mf

EI

r
; L�k ¼

Lk

L
; xc ¼

xc

L
,

b ¼
mmLffiffiffiffiffiffiffiffiffiffi
mEI
p v̄; g ¼

mmL3

EI
v̄2; d ¼

q

L
; Mf ¼

mf

m
,

xm ¼
xm

L
¼ v̄L2

ffiffiffiffiffiffi
m

EI

r
t; K�R ¼

KRL

EI
, ð19Þ

where v̄ is v=L. Therefore, the dimensionless equation of motion is obtained in matrix form as follows:

M€dþ C_dþ Kd ¼ 0, (20)

where ð�Þ denotes the q=qt and (0) stands for the q=qx. The matrices of Eq. (20) can be written respectively as

M ¼
Xm
n¼1

X2
k¼1

Z L�
k

0

f2
nkðxÞ dxþMf

Z L�
k

0

f2
nkðxf Þ dxf þMmf

2
nkðxmÞ

� �
; (21a)

C ¼
Xm
n¼1

X2
k¼1

Mf

Z L�
k

0

d

dt
ff2

nkðxf Þg dxf þMm

d

dt
ff2

nkðxmÞg

� �
; (21b)

K ¼
Xm
n¼1

X2
k¼1

Z L�
k

0

ff00nkðxÞg
2 dxþ b

d

dt
ff0nkðxmÞgfnkðxmÞ þ

d

dt
ffnkðxmÞgf

0
nkðxmÞ

� ��

� gff0nkðxmÞg
2 þ

ffiffiffiffiffiffiffiffi
Mf

p
U

Z L�
k

0

d

dt
ff0nkðxf Þgfnkðxf Þ þ

d

dt
ffnkðxf Þgf

0
nkðxf Þ

� �
dxf

�U2

Z L�
k

0

ff0nkðxf Þg
2 dxf þ K�Rff

0
n2ðx2 ¼ 0Þ � f0n1ðx1 ¼ xcÞg

2

�
. ð21cÞ

2.5.2. Modal formulation

Eq. (20) can be transformed into the following equation:

M� _gþ K�g ¼ 0. (22)

For the complex modal analysis, it is assumed that g is a harmonic function of t expressed as

g ¼ eltH, (23)



ARTICLE IN PRESS
H.-I. Yoon, I.-S. Son / Journal of Sound and Vibration 292 (2006) 941–953 947
where l is the eigenvalue, and H is the corresponding mode shape. From the eigenvalues in Eqs. (22), (23), the
frequencies can be obtained.

3. Numerical results and discussion

In this study, the dynamic behavior of the cracked simply supported pipe influenced by the moving mass,
the crack severity ratio y�ð¼ y=pÞ, and the position ratio of the crack xcð¼ xc=LÞ are computed by the fourth-
order Runge–Kutta method. To illustrate this response, the pipe of the length 1m, out-radius Ro ¼ 0:1 m, and
in-radius Ri ¼ 0:08 m was considered (Young’s modulus ¼ 210GPa, mass density ¼ 7860 kg/m3).

We have studied the dimensionless mid-span deflection of the simply supported pipe for the first mode of
vibration, and the frequency variations of the cracked simply supported pipe for the first two modes of
vibration. The frequency ratio is defined as

O ¼
o ðcracked frequencyÞ

o0 ðun-cracked frequencyÞ
. (24)

Figs. 4–7 represent the dimensionless mid-span deflection for a cracked pipe conveying fluid with a moving
mass due to the crack, a moving mass and fluid, respectively. In figures, the horizontal axis is the position of
the moving mass, and the axis of the ordinates are the dimensionless mid-span deflection ðd=jdmaxjÞ of the
cracked pipe.

Fig. 4 shows the dimensionless mid-span deflection for a cracked pipe conveying fluid with Mm ¼ 0:3,
U ¼ 0:1, and xc ¼ 0:3. The velocity of moving mass is 1m/s. When the moving mass velocity and the fluid
velocity are constant, the mid-span deflection of the simply supported pipe is proportion to the crack severity
ratio. As the crack severity ratio is increased, the position of the moving mass that makes the maximum mid-
span deflection of the simply supported pipe is moved to the rear bound of the pipe. In y� ¼ 0:05, the
maximum mid-span deflection of the pipe occurs at x ¼ 0:62, a distance from the left-hand support. In
y� ¼ 0:15, the maximum mid-span deflection of the pipe occurs at x ¼ 0:75.

Fig. 5 represents the dimensionless mid-span deflection of a cracked pipe conveying fluid according to the
crack position ratios for v ¼ 1 m=s, U ¼ 0:1, and y� ¼ 0:1. These results mean that when the crack is located
at the center its effect is the largest on the mid-span deflection of the cracked simply supported pipe conveying
fluid. Comparing Fig. 4 with Fig. 5, the mid-span deflection of the cracked pipe conveying fluid is more
sensitive to the crack severity ratio than to the position ratio of the crack.

Fig. 6 shows the variation of the mid-span deflection of the cracked pipe conveying fluid with the moving
mass for the four velocities of the fluid. When the velocity of the moving mass is constant, the dimensionless
mid-span deflection of the simply supported pipe is proportional to the velocity of the fluid. The difference of
maximum mid-span deflection of the cracked pipe in the two case of U ¼ 0:5 and 1:5 is about 11.21%.
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The variation of mid-span deflection of a cracked pipe conveying fluid according to the moving mass is
shown in Fig. 7. In curves the crack severity ratio, the position ratio of the crack and the velocity of the
moving mass are 0.1, 0.3 and 1m/s, respectively. Totally, as the moving mass is increased, the mid-span
deflection of the simply supported pipe conveying fluid is increased. As the moving mass is increased, the
position of the moving mass that appears the maximum mid-span deflection of the simply supported pipe is
gradually moved to the rear bound of the pipe. These are the results by the coupling between the moving mass
and the velocity of the moving mass.

Figs. 8 and 9 present the frequency ratios of a cracked pipe for the first two modes for the variations of
the crack severity ratio and the position ratio of the crack with Mm ¼ 0:3 and U ¼ 0:1, respectively. The
horizontal axis is the position of the moving mass, the axis of the ordinates are the frequency ratios of the
cracked simply supported pipe conveying fluid with the moving mass. In Fig. 8, the frequency ratios of
the simply supported pipe are in inverse proportion to the crack severity ratio in the first mode of vibration.
Fig. 8(b) shows the frequency ratios of a cracked pipe for the second mode of vibration. In Fig. 9(a), when the
crack position exists in the center of the simply supported pipe conveying fluid, the frequency ratio has the
smallest value. In Fig. 9(b), when the crack position exists in the center of the simply supported pipe conveying
fluid, its frequency ratio is always unit for every position of the moving mass. That is, this system has the same
frequency as the un-cracked pipe. This is the reason that the crack located at the node of the second mode of
vibration. In Fig. 9, every curve shows that the lowest value of frequency ratio appears when the moving mass
moves up on the crack position.
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Figs. 10 and 11 present the frequency of a cracked pipe conveying fluid with the moving mass according to
the variation of the fluid velocity and the moving mass, respectively. In these figures, the unit of frequency is 1/
(dimensionless time; t). The crack severity ratio y� is 0.1, the position ratio of the crack xc is 0.3, and the
velocity of moving mass is 1m/s. Totally, the frequencies of the simply supported pipe are in inverse
proportion to the velocity of fluid in the each modes of vibration. When the position of the moving mass exists
in the center of the simply supported pipe conveying fluid, the difference of frequencies of the cracked pipe in
the two case of U ¼ 0:5 and 1:5 is about 11.3% for the first mode of vibration. In Fig. 11(a), as the moving
mass is increased, the frequency of the simply supported pipe conveying fluid is decreased. When the position
of the moving mass exists in the center of the simply supported pipe conveying fluid, the difference of
frequencies of the cracked pipe in the two case of Mm ¼ 0 (natural frequency) and Mm ¼ 0:1 is about 7.21%.
And the difference of frequencies of the cracked pipe in the two case of Mm ¼ 0:1 and 0:3 is about 13.6%.

Fig. 12 shows the natural frequency reduction of the first and second modes of vibration. As shown in the
figure, the reduction in natural frequency is related to the severity ratio and the position ratio of the crack, and
the mode shapes. In this case, it is without the moving mass.

The frequency ratios due to the crack parameters (crack position and crack severity), the fluid velocity and
the moving mass are presented in Table 1. In Table 1, the frequency ratios of the second mode of vibration are
unit. When the crack position ratio is 0.8, the frequency ratio of the cracked pipe with U ¼ 1 and Mm ¼ 0:3
has the larger value than the frequency ratio of the un-cracked pipe. The result is the influence of moving mass.
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Fig. 12. Variations of natural frequencies with crack position and crack severity: (a) first mode, (b) second mode.

Table 1

Frequency ratios for crack parameters (crack position and crack severity), fluid velocity, and moving mass ðv ¼ 1 m=sÞ

Crack

position ðxcÞ

Crack

severity ðy�Þ
Natural frequency

ðU ¼ 0;Mm ¼ 0Þ

Natural frequency

ðU ¼ 1:0;Mm ¼ 0Þ

Frequency

ðU ¼ 1:0;Mm ¼ 0:3Þ

First mode Second mode First mode Second mode First mode

(x ¼ 0:5)a
Second mode

(x ¼ 0:25)

0.3 0.08 0.9983 0.9973 0.9985 0.9974 0.9984 0.9906

0.12 0.9903 0.9788 0.9919 0.9793 0.9910 0.9452

0.15 0.9745 0.9201 0.9786 0.9213 0.9764 0.8536

0.5 0.08 0.9974 1.000 0.9978 1.000 0.9966 1.000

0.12 0.9852 1.000 0.9877 1.000 0.9816 1.000

0.15 0.9616 1.000 0.9675 1.000 0.9529 1.000

0.8 0.08 0.9999 0.9998 0.9992 0.9974 0.9992 1.002

0.12 0.9946 0.9813 0.9955 0.9819 0.9955 1.009

0.15 0.9857 0.9361 0.9881 0.9374 0.9879 1.004

ax (position of the moving mass from the left-hand support, x/L).
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Fig. 13 makes a comparison between our results and Mahmoud’s results [7] on the studies of the cracked
and un-cracked beam without fluid flow, where the velocity of a moving mass is 50m/s and the length of the
beam is 50m. These show that our curves are in good agreement with the Mahmoud’s curves for the mid-span
deflection of the cracked and un-cracked beam. Fig. 14 shows the damping effect of the fluid flow on the mid-
span deflection of the un-cracked pipe with a moving mass, where the velocity of a moving mass is 20m/s, the
length of the pipe is 10m, and the velocity of the fluid flow is 10m/s. The deflection of the pipe unconsidering
the damping effect of the fluid flow [32] is about 9.46% larger than our results. So the damping effect of the
fluid flow is one of the factors that must be considered on the studies of the dynamic behavior of the pipe.
4. Conclusions

In this paper, the influences of the crack severity and moving mass have been studied on the dynamic
behavior of the cracked simply supported pipe conveying fluid by the numerical method. The cracked pipe has
been treated as two undamaged segments connected by a rotational elastic spring at the cracked section. The
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stiffness of the spring depends on the crack severity and the geometry of the cracked section. The main
conclusions are the following.

(1) When the moving mass and the velocity of fluid are constant, the mid-span deflection of the cracked
simply supported pipe is proportional to the crack severity ratio.

(2) The mid-span deflection of the cracked pipe conveying fluid is more sensitive to the crack severity ratio
than to the crack position ratio.

(3) As the moving mass and the fluid velocity are increased, the mid-span deflection of the cracked simply
supported pipe conveying fluid is increased.

(4) When the crack position exists in center of the pipe conveying fluid, its frequency ratio has the smallest
value for the first mode of vibration. At this position of the crack, the frequency ratio is always unit and
independent of the crack severity ratio for the second mode of vibration.

(5) The frequencies of cracked simply supported pipe conveying fluid are in inverse proportion to the fluid
velocity and the moving mass, respectively.

These study results will contribute to the safety test and stability estimation of structures of a cracked pipe
conveying fluid with a moving mass.
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[2] Y. Sugiyama, K. Katayama, E. Kanki, K. Nishino, B. Åkesson, Stabilization of cantilevered flexible structures by means of an

internal flowing fluid, Journal of Fluids and Structures 10 (1996) 653–661.

[3] H.P. Lee, The dynamic response of a Timoshenko beam subjected to a moving mass, Journal of Sound and Vibration 198 (2) (1996)

249–256.

[4] M.M. Stanisic, On a new theory of the dynamic behavior of the structures carrying moving masses, Ingenieur-Archiv 55 (1985)

176–185.

[5] H.P. Lee, Dynamic response of a beam with a moving mass, Journal of Sound and Vibration 191 (2) (1995) 289–294.

[6] H.I. Yoon, J.T. Jin, I.S. Son, A study on dynamic behavior of simply supported fluid flow pipe with crack and moving mass,

Proceedings of the 11th International Congress on Sound and Vibration, 2004, pp. 2215–2222.

[7] M.A. Mahmoud, C.S. Abou Zaid, Dynamic response of a beam with a crack subject to a moving mass, Journal of Sound and

Vibration 256 (4) (2002) 591–603.

[8] T.G. Chondros, A.D. Dimarogonas, Identification of crack in welded joints of complex structures, Journal of Sound and Vibration 69

(1980) 531–538.

[9] T.G. Chondros, A.D. Dimarogonas, Dynamic sensitivity of structures to cracks, Journal of Vibration and Acoustics, Stress and

Reliability in Design 111 (1989) 251–256.

[10] T.G. Chondros, A.D. Dimarogonas, Vibration of a cracked cantilever beam, Journal of Vibration and Acoustics, Transactions of the

American Society of Mechanical Engineers 120 (1998) 742–746.

[11] W.M. Ostachowicz, M. Krawczuk, Analysis of the effect of cracks on the natural frequencies of a cantilever beam, Journal of Sound

and Vibration 150 (1991) 191–201.

[12] C. Zhu, D.A. Robb, D.J. Ewins, The dynamics of a cracked rotor with an active magnetic bearing, Journal of Sound and Vibration 265

(2003) 469–487.

[13] S. Christides, A.D.S. Barr, One-dimensional theory of cracked Bernoulli–Euler beams, International Journal of Mechanical Sciences

26 (11/12) (1984) 639–648.

[14] M.H.F. Dado, O. Abuzeid, Coupled transverse and axial vibratory behaviour of cracked beam with end mass and rotary inertia,

Journal of Sound and Vibration 261 (2003) 675–696.

[15] D. Liu, H. Gurgenci, M. Veidt, Crack detection in hollow section structures through coupled response measurements, Journal of

Sound and Vibration 261 (2003) 17–29.

[16] S.C. Fan, D.Y. Zheng, Stability of a cracked Timoshenko beam column by modified Fourier series, Journal of Sound and Vibration

264 (2003) 475–484.

[17] D.Y. Zheng, S.C. Fan, Vibration and stability of cracked hollow-sectional beams, Journal of Sound and Vibration 267 (2003) 933–954.

[18] S.M. Murigendrappa, S.K. Maiti, H.R. Srirangrajan, Experimental and theoretical study on crack detection in pipes filled with fluid,

Journal of Sound and Vibration 270 (2004) 1013–1032.

[19] J. Wauer, On the dynamics of cracked rotors: a literature survey, Applied Mechanics Review 43 (1) (1990) 13–17.

[20] A.D. Dimarogonas, Vibration of cracked structures: a state of the art review, Engineering Fracture Mechanics 55 (5) (1996) 831–857.

[21] G. Bamnios, A. Trochides, Dynamic behavior of a cracked cantilever beam, Applied Acoustics 45 (1995) 97–112.

[22] T.G. Chondros, A.D. Dimarogonas, Vibration of a cracked cantilever beam, Transactions of the ASME 120 (1998) 742–746.

[23] E.I. Shifrin, R. Ruotolo, Natural frequencies of a beam with an arbitrary number of cracks, Journal of Sound and Vibration 222 (3)

(1999) 409–423.

[24] S.M. Cheng, X.J. Wu, W. Wallace, A.S.J. Swamidas, Vibrational response of a beam with a breathing crack, Journal of Sound and

Vibration 225 (1) (1999) 201–208.

[25] J.H. Kuang, B.W. Huang, The effect of blade crack on mode localization in rotating bladed disks, Journal of Sound and Vibration 227

(1) (1999) 85–103.

[26] I. Takahashi, Vibration and stability of non-uniform cracked Timoshenko beam subjected to follower force, Computers and

Structures 71 (1999) 585–591.

[27] L. Nobile, Mixed crack initiation and direction in beams with edge crack, Theoretical and Applied Fracture Mechanics 33 (2000)

107–116.

[28] M. Kisa, J. Brandon, The effect of closure of cracks on the dynamics of a cracked cantilever beam, Journal of Sound and Vibration 238

(1) (2000) 1–18.

[29] E. Viola, L. Federici, L. Nobile, Detection of crack location using cracked beam element method for structural analysis, Theoretical

and Applied Fracture Mechanics 36 (2001) 23–35.

[30] Y. Bamnios, E. Douka, A. Trochidis, Crack identification in beam structures using mechanical impedance, Journal of Sound and

Vibration 256 (2) (2002) 287–297.

[31] H.I. Yoon, I.S. Son, Dynamic behavior of cracked pipe conveying fluid with moving mass based on Timoshenko beam theory, KSME

International Journal 18 (12) (2004) 2216–2224.

[32] H.I. Yoon, S.H. Lim, J.S. Yu, Influence of two moving masses on dynamic behavior of a simply supported pipe conveying fluid flow,

Proceedings of the Eighth International Congress on Sound and Vibration, Hong Kong, China, 2001, pp. 2835–2842.


	Dynamic behavior of cracked simply supported pipe �conveying fluid with moving mass
	Introduction
	Theory and formulations
	Energy of the pipe and moving mass
	Work and energy due to the fluid flow
	Boundary conditions
	Crack modeling
	Equation of motion
	Dimensionless equation of motion
	Modal formulation


	Numerical results and discussion
	Conclusions
	References


